

Self-Managed Leasing for Distributed Systems

Kevin Bowers

Renssalaer Polytechnic Institute

bowerk@rpi.edu

Kevin Mills, Steve Quirolgico, and Scott Rose
National Institute of Standards and Technology

{kmills, steveq, scottr}@nist.gov

ABSTRACT
We describe an adaptive algorithm that enables a distributed
Jini enabled system, given a fixed allocation of resources, to
vary lease periods to achieve the best responsiveness.

Keywords
algorithm, self-managing, performance, Jini, leasing

1. INTRODUCTION
Distributed systems require strategies to detect and recover
from failures. One commonly used strategy employs a
leasing mechanism, where a node grants a leaseholder access
to a resource for a limited time (the lease period). Once the
resource is no longer needed, the leaseholder may relinquish
its lease. If the resource is needed beyond the original lease
period, then the leaseholder can renew the lease by
requesting additional lease periods. If the leaseholder does
not renew before expiration of the lease period, the lease
grantor assumes leaseholder failure and terminates the lease.

Choosing an appropriate lease period entails tradeoffs among
resource utilization, responsiveness, and number of
leaseholders. We explore these issues in the context of
service-discovery protocols, which allow distributed
software components to discover each other and compose
themselves into assemblies. Though several service-
discovery protocols currently exist [e.g., 1-3], [5] we
selected Jini Network Technology [1] to demonstrate our
ideas, because leasing plays a central role in registering Jini
services.

2. JINI LEASING
Jini defines an architecture that enables clients and services
to rendezvous through a third party, known as a lookup
service. A Jini service registers a description of itself with
each discovered lookup service.

A registering component requests registration for duration
LR, which may be accepted at time TG for a granted lease
period LG < LR. LR or may be any, which allows any value
for LG. To extend registration beyond LG, registering
components must renew the lease prior to an expiration time
TE = TG + LG; otherwise, registration is revoked. This cycle
continues until a Jini component cancels or fails to renew a
lease. Lookup services assign LG within a configured range,
LMIN < LG < LMAX. While a granted lease may not be revoked
prior to TE, lookup services may deny any lease request.

We can analyze performance of a Jini leasing system. Let SR
be lease-request size, SG be lease-grant size, and N be
number of leaseholders. Typically, a leaseholder and lookup
service exchange one request-grant pair per renewal cycle,
with rate 1/LG Hz. Assuming identical LG assigned for each
lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B
increases linearly with N and decreases exponentially with
LG. Another metric, responsiveness, R, measures the latency
with which lookup services can detect leaseholder failure.
Assuming uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., L]. Then, using LRG 2= G,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)(GMAX LB ⋅= () GR SS +N]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

3. A SELF-ADAPTIVE ALGORITHM
FOR JINI LEASING

Assuming a leasing system must consume at most bandwidth
B and guarantee minimum average responsiveness RBEST, a
lookup service can grant a maximum lease period LMAX =
2RBEST. Given B, SR, and SG, we can determine a maximum
lease-renewal rate G = B / (SR + SG). For minimum system
size, NMIN = 1, the lookup service can grant a minimum
lease period LMIN = 1/G. While this value for LMIN respects
the bandwidth constraint, other factors should be considered.
For example, at LMIN = 1/G leaseholder processing burden

might prove unacceptable. Instead, a leasing system might
constrain maximum responsiveness (RWORST), giving a
minimum lease period LMIN = 2RWORST. Knowing N, a
lookup service may select a suitable granted lease period
from a range (LMIN < LG < LMAX) using a simple algorithm.
First, compute LG = N/G. If LG > LMAX, then deny the lease;
otherwise, if LG < LMIN, then set LG = LMIN. Assigning LG
with this algorithm permits a leasing system to constrain B
and guarantee minimum average responsiveness (RBEST),
while providing the best responsiveness achievable (up to
RWORST) as N varies over 1..NMAX.

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

Fig. 1. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three
granted lease periods (LG = 15 s, 60 s, and 120 s) as
system size increases (N = 10 to 200 leaseholders).

4. SIMULATION RESULTS
We coded an SLX discrete-event simulation [5] model of
Jini to confirm our analysis and to investigate dynamic
behavior of our self-adaptive algorithm. We conducted
simulation experiments, varying N from 10..200 and LG from
15..300 s in 15-s increments. We used SR = 128 and SG = 32
bytes. Figure 2 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. The simulation confirms
our analyses: (1) B increases linearly with N for a given LG
and decreases exponentially with LG for a given N and (2) R
= LG/2, independent of N. Next, we simulated our adaptive
leasing algorithm. Figure 3 illustrates how the algorithm
constrains B while improving R as system size decreases.

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

RR

Fig. 2. Responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis –as system size
decreases (N = 200 to 0 leaseholders).

5. IMPLEMENTATION
These promising results led us to implement our adaptive
algorithm in “reggie”, a publicly available implementation of
a Jini lookup service. Administrative actions occur through
the RegistrarAdmin interface, which is not part of the Jini
core specification, but a Sun extension to Jini. The
RegistrarAdmin interface allows basic monitoring,
configuration, and control of an operational lookup server
just as if it were any other type of Jini-enabled service.

To implement self-managed leasing, we modified the
“reggie” server code to assign lease-grant times (LG) based
on an administrator-assigned policy specified by two target
values: worst-case average failure responsiveness (RWORST)
and average bandwidth (B) allocated to lease renewal
transactions. We added a collection of access methods to the
RegistrarAdmin interface, allowing a Jini client to view: the
current LMIN, LMAX, and LG, the number of leaseholders (N)
on the server, the instantaneous average bandwidth (BAVG)
consumed by lease renewals, and the instantaneous average
failure responsiveness (RAVG).

Results from our live experiment are similar to the results we
obtained from simulations. For example, the behavior of
BAVG (Bandwidth) and RAVG (Responsiveness) were similar to
the simulation results when services were added, then
removed from the network.

6. FUTURE WORK
Given the performance tradeoffs and implementation costs,
we conclude that our simple adaptive leasing algorithm can
yield useful performance properties at little cost. We argue
that our adaptive leasing algorithm should also apply to
similar systems that employ leasing for resources, such as
UPnP event subscriptions [2]. The modifications are done
on the resource provider side, and any system that allows for
flexible lease times should be able to take advantage of this
algorithm.

7. REFERENCES
[1] Jim Waldo. “The JiniTM architecture for network-centric

computing”, Communications of the ACM, July 1999.
[2] Universal Plug and Play Device Architecture, Version

1.0, 08 Jun 2000 10:41 AM. © 1999-2000 Microsoft
Corporation. All rights reserved.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley, 1999. The latest version is available on the
web from Sun.

[4] James O. Henriksen, “An Introduction to SLXTM”
Proceedings of the 1997 Winter Simulation
Conference, ACM, Atlanta, Georgia, December 7-10,
1997, pp. 559-566.

[5] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamiritham,
and R. Tewari. “Performance: Cooperative Leases:
Scalable Consistency Maintenance in Content
Distribution Networks”, Proceedings of the eleventh
International Conference on World Wide Web, May
2002.

	Keywords

